If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-100x-328=0
a = 1; b = -100; c = -328;
Δ = b2-4ac
Δ = -1002-4·1·(-328)
Δ = 11312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11312}=\sqrt{16*707}=\sqrt{16}*\sqrt{707}=4\sqrt{707}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{707}}{2*1}=\frac{100-4\sqrt{707}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{707}}{2*1}=\frac{100+4\sqrt{707}}{2} $
| 350p+230=2400 | | 5/8k+7/6k=k-1/2 | | 3/5(x-3)=2x+15 | | y²+4y-21=0 | | (5x-10)(60+2x)(x+50)=180 | | X+(x/2)+(x/2)=180 | | 180-t×6=60+t×1/2 | | 4p-5=16 | | 2x²+5x-1=0 | | n^2+5-6n=0 | | (-2+5)-(3x+4)=3x+5 | | 3x-4=5x+5-(4x+4) | | 3x-2(x-9)=3+4(1-2x) | | 5=2d+19 | | 5x+33=12x-58 | | 0.2x=6.4 | | z/9+7=7 | | (-4)x^2+(-4)x-1=0 | | 2a+5a-3a=20 | | 6y+2y=-5+3 | | 29+4x=64-3x | | 23-5y=65+2y | | 4+7a=4a-23 | | 34+78+68=x | | 78+68+x=180 | | 5c+23=8c+11 | | 4x2+4x+9=0 | | 6=7(x+6)+2x | | 2(y+7)-5y=38 | | -5w+3(w-3)=2 | | (x+(x*0.05))=1500 | | X=13x-5 |